Search results for "Electron Spectra"

showing 10 items of 20 documents

Towards an accurate molecular orbital theory for excited states : Ethene, butadiene, and hexatriene

1993

A newly proposed quantum chemical approach for ab initio calculations of electronic spectra of molecular systems is applied to the molecules ethene, trans‐1,3‐butadiene, and trans‐trans‐1,3,5‐hexatriene. The method has the aim of being accurate to better than 0.5 eV for excitation energies and is expected to provide structural and physical data for the excited states with good reliability. The approach is based on the complete active space (CAS) SCF method, which gives a proper description of the major features in the electronic structure of the excited state, independent of its complexity, accounts for all near degeneracy effects, and includes full orbital relaxation. Remaining dynamic ele…

ErrorsGeneral Physics and AstronomyPolyenesElectronic structuresymbols.namesakeRydberg StatesAb initio quantum chemistry methodsComputational chemistrySinglet statePhysical and Theoretical ChemistryTriplet state:FÍSICA::Química física [UNESCO]AccuracyExcitationCalculation MethodsButadieneTripletsChemistryMolecular orbital theoryScf CalculationsExcited StatesCalculation Methods ; Quantum Chemistry ; Ab Initio Calculations ; Electron Spectra ; Butadiene ; Accuracy ; Scf Calculations ; Triplets ; Rydberg States ; Excitation ; Errors ; Polyenes ; Excited StatesQuantum ChemistryUNESCO::FÍSICA::Química físicaElectron SpectraExcited stateRydberg formulasymbolsRydberg stateAtomic physicsAb Initio Calculations
researchProduct

Ab initio determination of the ionization potentials of DNA and RNA nucleobases

2006

Quantum chemical high level ab initio coupled-cluster and multiconfigurational perturbation methods have been used to compute vertical and adiabatic ionization potentials of the five canonical DNA and RNA nucleobases: uracil, thymine, cytosine, adenine, and guanine. Several states of their cations have been also calculated. The present results represent a systematic compendium of these magnitudes, establishing theoretical reference values at a level not reported before, calibrating computational strategies, and guiding the assignment of the features in the experimental photoelectron spectra. Daniel.Roca@uv.es Mercedes.Rubio@uv.es Manuela.Merchan@uv.es Luis.Serrano@uv.es

DNA ; Macromolecules ; Ionisation potential ; Photoelectron spectra ; Molecular biophysics ; Ab initio calculations ; Coupled cluster calculations ; Perturbation theoryGuanineGuaninePhotochemistryAb initioBiophysicsGeneral Physics and AstronomyIonisation potentialPerturbation theoryNucleobasechemistry.chemical_compoundCytosinePhotoelectron spectraCoupled cluster calculationsAb initio quantum chemistry methodsComputational chemistryIonizationPhysics::Atomic and Molecular ClustersPhysical and Theoretical ChemistryUracil:FÍSICA::Química física [UNESCO]IonsPhysics::Biological PhysicsQuantitative Biology::BiomoleculesBase CompositionChemistry PhysicalAdenineUracilDNAMolecular biophysicsQuantitative Biology::GenomicsThymineUNESCO::FÍSICA::Química físicachemistryMacromoleculesCalibrationQuantum TheoryRNAAb initio calculationsCytosineSoftwareThymine
researchProduct

gA -driven shapes of electron spectra of forbidden β decays in the nuclear shell model

2017

The evolution of the shape of the electron spectra of 16 forbidden ${\ensuremath{\beta}}^{\ensuremath{-}}$ decays as a function of ${g}_{\mathrm{A}}$ was studied using the nuclear shell model in appropriate single-particle model spaces with established, well-tested nuclear Hamiltonians. The $\ensuremath{\beta}$ spectra of $^{94}\mathrm{Nb}({6}^{+})\ensuremath{\rightarrow}\phantom{\rule{0.16em}{0ex}}^{94}\mathrm{Mo}({4}^{+})$ and $^{98}\mathrm{Tc}({6}^{+})\ensuremath{\rightarrow}\phantom{\rule{0.16em}{0ex}}^{98}\mathrm{Ru}({4}^{+})$ were found to depend strongly on ${g}_{\mathrm{A}}$, which makes them excellent candidates for the determination of the effective value of ${g}_{\mathrm{A}}$ wit…

Physics010308 nuclear & particles physicsElectron spectra0103 physical sciencesNuclear shell modelAtomic physics010306 general physics01 natural sciencesSpectral linePhysical Review C
researchProduct

Electron spectra in forbidden β decays and the quenching of the weak axial-vector coupling constant gA

2017

Evolution of the electron spectra with the effective value of the weak axial-vector coupling constant ${g}_{\mathrm{A}}$ was followed for 26 first-, second-, third-, fourth- and fifth-forbidden ${\ensuremath{\beta}}^{\ensuremath{-}}$ decays of odd-$A$ nuclei by calculating the involved nuclear matrix elements (NMEs) in the framework of the microscopic quasiparticle-phonon model (MQPM). The next-to-leading-order terms were included in the $\ensuremath{\beta}$-decay shape factor of the electron spectra. The spectrum shapes of third- and fourth-forbidden nonunique decays were found to depend strongly on the value of ${g}_{\mathrm{A}}$, while first- and second-forbidden decays were mostly unaff…

PhysicsCoupling constantta114010308 nuclear & particles physicsElectron spectrabeetasäteilyExcitation spectranuclear matrix elements01 natural sciencesSpectral linespektritsymbols.namesakeMean field theoryDouble beta decay0103 physical sciencesforbidden beta-decaysymbolselectron spectraAtomic physics010306 general physicsHamiltonian (quantum mechanics)PseudovectorPhysical Review C
researchProduct

Thin film growth and band lineup of In2O3 on the layered semiconductor InSe

1999

Thin films of the transparent conducting oxide In2O3 have been prepared in ultrahigh vacuum by reactive evaporation of indium. X-ray diffraction, optical, and electrical measurements were used to characterize properties of films deposited on transparent insulating mica substrates under variation of the oxygen pressure. Photoelectron spectroscopy was used to investigate in situ the interface formation between In2O3 and the layered semiconductor InSe. For thick In2O3 films a work function of φ = 4.3 eV and a surface Fermi level position of EF−EV = 3.0 eV is determined, giving an ionization potential IP = 7.3 eV and an electron affinity χ = 3.7 eV. The interface exhibits a type I band alignmen…

Materials scienceAnalytical chemistryIonisation potentialGeneral Physics and AstronomyWork functionPhotoelectron spectrasymbols.namesakeX-ray photoelectron spectroscopyIndium compounds:FÍSICA [UNESCO]Electron affinityWork functionThin filmbusiness.industryFermi levelUNESCO::FÍSICAHeterojunctionInterface statesBand structureEvaporation (deposition)X-ray diffractionElectron affinitySemiconductorVacuum depositionIndium compounds ; Vacuum deposition ; X-ray diffraction ; Photoelectron spectra ; Semiconductor-insulator boundaries ; Work function ; Fermi level ; Ionisation potential ; Electron affinity ; Interface states ; Band structureFermi levelsymbolsSemiconductor-insulator boundariesOptoelectronicsbusiness
researchProduct

Second-forbidden nonunique β− decays of Na24 and Cl36 assessed by the nuclear shell model

2020

We have performed a systematic study of the $logft$ values, shape factors, and electron spectra for the second-forbidden nonunique ${\ensuremath{\beta}}^{\ensuremath{-}}$ decays of $^{24}\mathrm{Na}({4}^{+})\ensuremath{\rightarrow}^{24}\mathrm{Mg}({2}^{+})$ and $^{36}\mathrm{Cl}({2}^{+}){\ensuremath{\rightarrow}}^{36}\mathrm{Ar}({0}^{+})$ transitions under the framework of the nuclear shell model. We have performed the shell model calculations in the $sd$ model space, using more recent microscopic effective interactions such as Daejeon16, chiral N3LO, and JISP16. These interactions are derived from the no-core shell model wave functions using Okubo-Lee-Suzuki transformation. For comparison,…

Physics010308 nuclear & particles physicsElectron spectraSHELL modelNuclear shell modelSpace (mathematics)01 natural sciencesSpectral line0103 physical sciencesAtomic physics010306 general physicsWave functionNuclear theoryEnergy (signal processing)Physical Review C
researchProduct

A theoretical study of the electronic spectrum of bithiophene

1995

The electronic spectrum of bithiophene in the energy range up to 6.0 eV has been studied using multiconfigurational second order perturbation theory (CASPT2) and a basis set of ANO type, with split valence quality and including polarization functions on all heavy atoms. Calculations were performed at a planar (trans) and twisted geometry. The calculated ordering of the excited singlet states is 1Bu, 1Bu, 1Ag, 1Ag, and 1Bu with 0–0 transition energies: 3.88, 4.15, 4.40, 4.71, and 5.53 eV, respectively. The first Rydberg transition (3s) has been found at 5.27 eV. The results have been used in aiding the interpretation of the experimental spectra, and in cases where a direct comparison is poss…

Valence (chemistry)Electron spectraChemistryGeneral Physics and AstronomyGeometryExcited StatesSpectral lineUNESCO::FÍSICA::Química físicasymbols.namesakePlanarElectron SpectraThiopheneRydberg StatesExcited stateRydberg formulasymbolsPerturbation TheoryThiophene ; Electron Spectra ; Perturbation Theory ; Geometry ; Excited States ; Rydberg StatesPhysical and Theoretical ChemistryAtomic physics:FÍSICA::Química física [UNESCO]Excited singletBasis set
researchProduct

Electron spectra in forbidden β decays and the quenching of the weak axial-vector coupling constant gA

2017

Evolution of the electron spectra with the effective value of the weak axial-vector coupling constant gA was followed for 26 first-, second-, third-, fourth- and fifth-forbidden β− decays of odd-A nuclei by calculating the involved nuclear matrix elements (NMEs) in the framework of the microscopic quasiparticle-phonon model (MQPM). The next-to-leading-order terms were included in the β-decay shape factor of the electron spectra. The spectrum shapes of third- and fourth-forbidden nonunique decays were found to depend strongly on the value of gA, while first- and second-forbidden decays were mostly unaffected by the tuning of gA. The gA-driven evolution of the normalized β spectra was found t…

spektritbeetasäteilyforbidden beta-decayelectron spectranuclear matrix elements
researchProduct

A combined theoretical and experimental determination of the electronic spectrum of acetone

1996

A combined ab initio and experimental investigation has been performed of the main features of the electronic spectrum of acetone. Vertical transition energies have been calculated from the ground to the ny→π∗, π→π∗, σ→π∗, and the n=3 Rydberg states. In addition, the 1A1 energy surfaces have been studied as functions of the CO bond length. The 1A1 3p and 3d states were found to be heavily perturbed by the π→π∗ state. Resonant multiphoton ionization and polarization‐selected photoacoustic spectra of acetone have been measured and observed transitions were assigned on internal criteria. The calculated vertical transition energies to the ny→π∗ and all Rydberg states were found to be in agreeme…

Photoacoustic SpectroscopyOvertoneAb initioGeneral Physics and AstronomyPhotoionizationPhotoionizationSpectral lineAcetoneBond LengthsGround Statessymbols.namesakeRydberg StatesAb initio quantum chemistry methodsPolarizationIonizationPhysics::Atomic PhysicsPhysical and Theoretical Chemistry:FÍSICA::Química física [UNESCO]Carbon MonoxideEnergyChemistryUNESCO::FÍSICA::Química físicaSurfacesBond lengthElectron SpectraRydberg formulasymbolsAb Initio Calculations ; Acetone ; Bond Lengths ; Carbon Monoxide ; Electron Spectra ; Energy ; Ground States ; Multi−Photon Processes ; Photoacoustic Spectroscopy ; Photoionization ; Polarization ; Rydberg States ; SurfacesMulti−Photon ProcessesAtomic physicsAb Initio CalculationsThe Journal of Chemical Physics
researchProduct

Stoichiometry-related Auger lineshapes in titanium oxides: Influence of valence-band profile and of Coster-Kronig processes

2004

International audience; The ability to determine the nature and the occurrence of defects is a central need of ceramic surface chemistry. In titanium oxides, the Ti-LMV Auger decays line shape is very sensitive to the titanium degree of oxidation, and has long been empirically used as a qualitative probe of the stoichiometry. In the present work, resonant Auger and resonant valence-band measurements at the Ti-L2,3 edges in TiO2, TiO2–x and metallic titanium provide a clear evidence that the evolutions of the Ti-LMV Auger line shape are due to drastic changes in the valence-band profile and in the probability of L2L3V Coster-Kronig decay processes when a fraction of titanium ions is reduced.…

PACS: 71.20.-b 32.80.Hd 77.84.Bw 82.80.Pvoxidationchemistry.chemical_element02 engineering and technologyceramics01 natural sciencesElectron spectroscopy71.20.-b; 32.80.Hd; 77.84.Bw; 82.80.PvIonAugerX-RAY-ABSORPTION; SURFACE-DEFECTS; RUTILE TIO2; Resonant AugerMetalsymbols.namesakephotoelectron spectra0103 physical sciencesRUTILE TIO2titanium010306 general physicstitanium compoundsAuger electron spectroscopyFermi levelvalence bandsResonant Auger021001 nanoscience & nanotechnologyCondensed Matter PhysicsSURFACE-DEFECTSElectronic Optical and Magnetic Materialsstoichiometrychemistryvisual_artX-RAY-ABSORPTIONsymbolsvisual_art.visual_art_mediumFermi levelspectral line breadthAuger electron spectraAtomic physics0210 nano-technologyStoichiometryTitanium
researchProduct